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It is shown that the statistical orthogonality of the Karhunen-Loeve (KL) eigenfunctions with

respect to both energy and dissipation makes them a particularly good basis for the definition of
an energy spectrum in inhomogeneous fluid flows. An effective wave number is defined to

characterize the KL eigenfunctions. The definition preserves the relationship between the

dissipation and energy spectra that holds for Fourier spectra, With the spectrum and wave

number so defined, the scale-similarity arguments that lead to the existence of a spectral inertial

range apply. It is also shown that the existence of a spectral inertial range in the KL

eigenspectrum is consistent with Kolmogorov's scale-similarity formulation for structure

functions. An example of the KL spectrum obtained from a numerically simulated plane

channel flow is presented.
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I. INTRODUCTION

The scale similarity theory of Kolmogorov 1 is one of

the most successful in turbulence. The k -5/3 inertial range

spectrum it predicts has been observed in many experi-

ments, and indeed the Kolmog0rov scaling laws are so well
established that new theories are required to be compatible

with them. Though Kolmogorov originally applied his ar-

guments to the statistics of velocity differences at nearby

points in the flow, the theory has most often and most

successfully been applied to the Fourier spectrum. How-

ever, analysis of the spatial Fourier spectrum is strictly

applicable only in the ease of homogeneous turbulence.

Several authors (e.g., Monin and Yaglom 2 and Batchelor 3)

make the argument, as did Kolmogorov, that at high Rey-

nolds numbers even inhomogeneous turbulence is "locally

homogeneous." They then go on to suggest that in some

sense a "local" Fourier analysis at high wave numbers can

be applied for which the inertial range theory would hold.
This is an appealing argument, but the Fourier represen-

tation is formally global, and the sense in which it can be

considered local is not defined (see Sec. III). Thus, for

inhomogeneous flows, the application of spectral inertial-

range theory awaits the identification of an appropriate

functional basis, analogous to the Fourier functions, by

which the spectrum can be defined. In this paper we seek a

global functional basis. One could also consider local basis

functions (e.g., wavelets), but they are not considered
here.

In a recent letter by Knight and Sirovich, 4 it was sug-

gested that the Karhunen-Loeve (KL) eigenfunctions 5

(empirical eigenfunctions) were a particularly good func-

tional basis for measuring inertial-range spectra in inhomo-

geneous flows. This suggestion was based on several exam-

ples in which KL eigenvalue spectra of low-Reynolds

number turbulent flows exhibited apparent inertial ranges.
Later, Sirovich 6 speculated that this may be due to the fact

that the KL eigenfunctions provide an optimum represen-

tation of the energy in a turbulent flow.

In this paper Knight and Sirovich's suggestion is ex-

amined theoretically to determine if and why the KL

eigenfunctions are an appropriate basis for defining an en-

ergy spectrum, and, in particular, for obtaining a spectral

inertial range. To do this, several well-known properties of

the KL eigenfunctions will be needed. They are stated be-

low without proof (see Ref. 5 and the references therein for
details).

A. Karhunen-Loeve eigenfunctions

For a flow in a bounded domain 0_, the (possibly

complex, vector) KL eigenfunctions _bi(x) are solutions of

the integral equation:

f Rij(x,x' )dx'=A_bi(x), (1))@j(x'

where Ru(x,x') = (ui(x) uj(x') } is the two-point correla-
tion tensor of the fluctuating velocity ui (( } signifies the

expected value and the velocities are at the same time), A

is the eigenvalue, and summation over repeated tensor in-
dices is assumed. There are countably infinite solutions

_b}n) and eigenvalues An. Due to the symmetry properties of

the kernel RU, the eigenvalues An are real and non-
negative, and are usually enumerated in order of decreas-

ing magnitude. It is convenient (though not necessary) to
consider the eigenfunctions to be complex, in general, so

that the complex exponential can be used (see below). The

eigenfunctions are orthogonal, and we will assume them to

be normalized such that the integral of their magnitude

squared is unity; thus

f A(n).t(m)*--"ri Wi aX=Omn, (2)

where * denotes the complex conjugate. The eigenfunc-

tions form a complete set for fields satisfying the velocity

boundary conditions, and thus earl be used as a basis to

represent the velocity:

ui(x)= _ an@}n)(x). (3)
n=l

In (3), the complex an are uncorrelated random variables
(stochastic processes in time) with variance A n, that is

794 Phys.Fluids6 (2), February1994



(ana* ) = _m6mn . (4)

The eigenvalue An is twice the average energy contributed

by mode n of the decomposition, and

f._ (uiui)dx= _ '_'n" (5)
n=l

In the special case in which the turbulence is homogeneous

in one or more spatial directions (with periodic boundary

conditions), the eigenfunctions have a complex exponen-

tial functional dependence in those directions. In this case

the KL decomposition reduces to the Fourier decomposi-

tion. Finally, _b_1) is the normalized function that maxi-

mizes the projection of u i, that is, it maximizes

(lal 12)= ( ut_b_1)* dx 2), (6)

and _b_1) and _b_2) are the two functions that maximize

( lax 12)+ ( [azl 2) and so forth for all n. Thus the _bi expan-

sion produces the most rapid convergence of partial sums

to the energy.

Other sets of eigenfunctions and eigenvalues can be

obtained by replacing Rij in (1) with Rff

= (*_P[Ui(X)]_a[Uj(X ')]), where _'_ is any linear operator.
In this case all the previous results hold with u i replaced

with _ (ui). A truncated expansion like (5) is then an

optimum representation of the quantity

f_._(ui)Z(ui)dx. This amounts to selecting the norm

and inner product with which the KL analysis is to be

performed.

Finally, as suggested by the above discussion, the KL

eigenfunctions in an inhomogeneous flow are not known a

priori. Thus, unlike homogeneous flows, inhomogeneous

flows require more than just the KL spectrum to describe
the second-order moments. Furthermore, it is difficult to

use the KL spectrum as an experimental or computational
diagnostic for inhomogeneous flows because the complete

two-point correlation is generally needed to compute it.

These limitations arise because inhomogeneous flows are

inherently more difficult to describe and understand than

homogeneous flows.

In See. II, the classical arguments leading to the iner-

tial range spectrum are generalized to inhomogeneous

flows. A derivation of an inhomogeneous inertial range

spectrum from Kolmogorov's original similarity hypothe-

ses is developed in See. III. An analysis of plane channel

flow is presented as an example in See. IV, and is followed

by concluding remarks in See. V.

II. THE INERTIAL-RANGE SPECTRUM

In homogeneous isotropic turbulence, the energy spec-

trum is easily defined from the spectrum tensor, which is

the Fourier transform of the two-point correlation tensor,

1 fRiy(6)e_,_,._ (7)(I_ij (k) = 8----_ d_,

where k is the wave vector (kl,k2,k 3) and here the two-

point correlation only depends on ($=x'--x. The energy

density in the three-dimensional wave space is

(k) =½(I)ii(k), which, due to isotropy, must depend only

on the magnitude k of the wave vector k. Thus, the three-

dimensional energy spectrum E(k) is obtained by integrat-

ing _ (k) over all k with given magnitude k to obtain

E(k) =4_-k2_ (k). (8)

Equivalently, we could start with the Fourier transform of

the velocity itself,

ift_i(k) = 8--"_ ui e-'k'x dx, (9)

and define the spectrum tensor as dPij = (aia*).
The inertial-range spectrum was first obtained theoret-

ically by Obukov, 7 but his derivation relied on a model for

the transfer of energy from small wave numbers to large
wave numbers. The more fundamental derivation relies di-

rectly on scale-similarity arguments like those of

Kolmogorov, 1 and can be found in any text on

turbulence. 2'3 They are repeated here so that we may ex-

amine them to see how they can be extended to inhomo-

geneous flows.
Following Kolmogorov, 1 we identify the bulk rate of

energy dissipation (rate of energy transfer across the spec-
trum),

e=; ( fOUi aUj'[OU i aUj' =2vf °
(10)

along with the kinematic viscosity v as the important di-

mensional parameters characterizing the turbulence. Note

that (10) allows us to define the dissipation spectrum

D(k)=2vkEE(k), describing the dissipation associated

with each wave number. Also required are a velocity (U)

and length (L) characterizing the largest scales in the flow
(e.g., (uiui) 1/2 and the integral scale). From strictly di-

mensional arguments, we then have

E( k ) = eE/3k - 5/3F ( k,l,kL, UL/v), ( 11 )

where _/= (v3/e) 1/4 is the Kolmogorov length scale and F

is a universal function. The length scales L and _/are the

scales of motion associated with the energy and dissipation
in the flow. Kolmogorov's first similarity hypothesis 1 states

that if the scale of motion is sufficiently small relative to

the energetic scales (kL >>1) then E(k) cannot depend on

the large-scale parameters L and U, so in this regime, F is

a function of k_/alone. The second similarity hypothesis

states that if the Reynolds number UL/v is sufficiently

large, so that, in addition, the scale of motion is large

enough relative to the dissipative scales (k_/< 1 ) that the

dissipation associated with it is negligible [D(k) is small],

then E(k) cannot depend explicitly on the viscosity (or _/).

In this case Fmust be a (universal) constant C 1. Thus, we

obtain the well-known inertial-range spectrum:

E( k ) = C1_-2/3k - 5/3, (12)

which can only exist if the Reynolds number is so high that

the energy containing and dissipation scales are well sepa-

rated. Note that (12) implies that

(k) = (C1/4_)e"2/3k -11/3. For simplicity we are not con-
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sidering here the intermittency of the dissipation pointed
out by Landau, s but the arguments below apply as well to

the refined theories developed to account for intermittency

(see Ref. 2, for example).

Two properties of the Fourier expansions underlying

the spectra discussed above were important in these argu-

ments. First, Parseval's relation holds for both energy and

dissipation (and any other quadratic quantity), so that

each individual mode makes a distinct positive-definite

contribution to the energy and the dissipation. This parti-

tioning of the energy between the modes is important be-

cause otherwise E(k) could not be interpreted as an energy

spectrum and would therefore be of no interest. Partition-

ing of the dissipation between the modes is important be-

cause the second similarity hypothesis required that the
dissipation associated with a mode (or wave number) be

negligible. If Parseval's relation did not hold for dissipa-
tion, the negligible modal dissipation condition would not

be obvious (see the discussion below). Second, the dimen-

sional analysis relied on the fact that each Fourier mode is

characterized by a well-defined length-scale (l/k). For

Fourier functions this length scale characterization is un-

ambiguous, since different Fourier functions are identical,

except for their scale.

Now consider the expansion of the velocity in a finite

domain (_) in some arbitrary (complete) basis set,

which, in general, is neither orthogonal or scale similar;

ui(x)= _ aj_J)(x). (13)
j=l

The energy _ and dissipation _ in the domain are then

' L=_ Z E (a,a*m) _I")_} m)* dx, (14a)
n m

=2rE Z (ang*m) r_ _'(Pu(_Cn))JcPu (_(m))* dx,
n m

(14b)

where _ij(u)=½(Oui/Oxj+Ouj/c3xi). Parseval's relation
for energy and dissipation holds in the case of the Fourier

functions because they satisfy

and

(15a)

f _'ij(_("))J_ij(_(m)) * (15b)dx=e,6,m,

where _ has been normalized as in (2), there is no sum-

marion in n, and en=f_'q(_(n))J_O(tb(n))* dx. How-

ever, only the Fourier functions (in particular domains)

satisfy both conditions in (15), since they are the eigen-
functions of the derivative operator. The Fourier functions

are not appropriate for inhomogeneous flows, as discussed

in the Introduction, so we cannot expect both conditions in
(15) to be satisfied. Fortunately, partitioning of the energy

and dissipation into individual modes also occurs if

(and*) =6,m( Jan12) (16)

(no summation with respect to n). This is, in some sense,

a weaker condition than ( 15 ), since only statistical orthog-

onality holds, rather than the functional orthogonality im-

plied by (15).

As discussed above, the definition of an energy spec-

trum requires that energy be partitioned between the

modes. Thus to pursue our generalization of the inertial

range spectrum, we require that the _ expansion functions

satisfy either (15a) or (16). We must also generalize the

requirement of negligible dissipation for the second simi-

larity hypothesis. One way to do this is to consider the

dynamic equation for the energy in a mode. In the case of

Fourier expansions, the viscous term in this equation is just

the dissipation associated with the mode. The negligible

dissipation requirement is thus seen to be a requirement

that the dynamics of modal energy be unaffected by vis-

cosity. With general expansion functions as in (13), the
viscous term in the equation for En=( lanl2)/2 (the en-

ergy in the mode n) is given by

--2V E (and*m) f.C "fl'vU(_(n))'_U( 'l_(m))* dx,D,=
m

(17)

which we thus require to be negligible for modes in an

inertial range. Equation (17) is obtained by integration by

parts, where the boundary terms are assumed to be zero.
The boundary terms will be zero in the case of no-slip

boundaries (for example). It is not clear how this argu-

ment can be extended to cases in which the boundary terms
are not zero.

The inertial range occurs over a range of the length

scales characterizing the expansion functions (1/k in the

case of Fourier). The definition of these length scales is not

trivial here since the expansion functions are not generally

scale similar, as the Fourier functions are. For the purposes

of inertial-range theory, the length-scale characterization

must be chosen such that the magnitude of the dissipation

(D n) relative to the energy (E n) of a mode increases with

decreasing length scale. This ensures that "large"-scale

modes will be energetic but not dissipative, while "small"-
scale modes will be dissipative but not energetic, as re-

quired by the inertial-range arguments. The most direct

way to accomplish this is to make the length scale depend

explicitly on the modal dissipation (D,) and the modal

energy (E_). Furthermore, a sensible length scale charac-

terizarion must depend only on the shape of the expansion

function (_(")), not on its amplitude or on other quantities

(e.g., the amplitudes of other modes). The only length

scale (expressed here as the effective wave number k,)

satisfying these restrictions, is given by

Dn

/_n=2--_n=26., (18)
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where e, is as defined in (15). The coefficient of ½is arbi-

trary, and is chosen by analogy to the equivalent relation-

ship for Fourier functions. Furthermore, for (18) to be

valid, we require that the _b expansion satisfy either (15b)

or (16), so that k n depends only on the shape of _b(n), and

Dn=2ven(la.12). Thus, the expansion must partition the

dissipation as well as the energy. One could certainly de-
vise expansion functions and associated length scales that

did not satisfy (18), bu t, which nonetheless segregated the

energy and dissipation into the large and small scales, re-

spectively. But, this would require that the functions and

length scales allow the relative magnitude of the dissipa-

tion to be related to or at least bounded by the wave num-

ber squared.

As was noted above, only the Fourier functions satisfy
both conditions (15a) and (15b). Thus if the expansion

functions _b(n) are to produce a partitioning of both the

energy and the dissipation (similar to Parseval's relation),

as discussed above, then the expansion coefficients must
satisfy (16). This condition is only satisfied by the KL

eigenfunctions (4) and the KL eigenfunctions based on
R "_ for linear _. Thus, it appears that the KL eigenfunc-

tions are indeed a particularly good choice of expansion

functions for general inhomogeneous flows, as suggested by

Knight and Sirovich. 4

The above discussion suggests that the similarity argu-

ments leading to an inertial-range spectrum for homoge-

neous turbulent flows are valid for the KL spectrum of any

sufliciently high Reynolds number turbulent flow, given

the generalized wave number, as defined in (18). Other

more involved derivations of the inertial-range spectrum
based on models of the transfer spectrum (e.g., Obukov 7

and Heisenberg 9) also rely on statistical orthogonality with

respect to energy and dissipation, so the KL spectrum

would be good for these derivations as well.

III. CONSISTENCY WITH KOLMOGOROV'S ORIGINAL
DEVELOPMENT

As mentioned in the Introduction, Kolmogorov did

not consider the energy spectrum itself, but rather the joint

probability distribution of the difference in velocity at

nearby points in the flow. This has the advantage that it is

directly applicable to inhomogeneous flows. When the ve-

locity differences are homogeneous and isotropic for suffi-

ciently small spatial separations, Kolmogorov's similarity

hypotheses yield

Rij(x,x' ) _Rij(x,x)

--2C62/3(_)r2/3[_ij--14-cos(Oi)cos(Oj)], (19)

provided that r/L<l and r/_l_l, where r=lx'-x [,
_= (x' +x)/2, and cos(0/) = (x_ -- xi)/r. Using this re-
suit, we should be able to show that the KL spectrum in an

inhomogeneous flow exhibits an inertial range, in the same

way that (19) can be used to show that the Fourier spec-

trum has an inertial range for homogeneous isotropic tur-

bulence. The existence of local isotropy is currently

controversial, 1°-12 but the isotropic form (19) is used be-

low only for simplicity. A similar analysis could be done

using a more general nonisotropic form.

A. One-dimensional spectrum

For the sake of simplicity, consider a flow that is ho-

mogeneous in two spatial directions (say x 1 and x3), and

the KL eigenfunctions representing the x 2=y variation of

the single velocity component u I in a finite domain y_ [a,b].

The more complicated problem of the three-dimensional

representation of the velocity is discussed in See. III B. In

the simple one-dimensional case, (19) reduces to

Rll(y,y,)=Rll(_,y_)2Ce..2/3(y_) [y_y, [2/3, (20)

where "y= (y' +y)/2, and the KL eigenfunctions satisfy

5f Rlm(Y,Y')_b(Y')dY'=A_b(Y). (21 )

Following Sirovich and Knight, 13we seek the asymptotic

behavior of the eigenfunctions as a--, _ in the WKB form:

_(y) =A (y)e lag(y), (22)

where dg(y)/dy>O for y_[a,b], fbalAIEdy=l, and

1�(b--a) f ba(dg/dy ) 2 dy= 1 (normalization conditions),

and it is assumed that derivatives of g and A are of order 1
or smaller in a. Nonzero dg/dy will be required in the

analysis below. Note that by definition (18), the effective

wave number k of _bgiven by (22) for large a is

k=a( ff g'2lAl2 dy) l/2+O(1). (23)

Substituting (22) into (21) and integrating by parts we

obtain, for the left-hand side of (21),

R(y'y')A(y')ei_g(Y')_ag'-_ y'=a +ay'=bi fSb _g,-7_(A(Y')OR(y,y')oy,

R(y,y')A'(y') R(y,y')A(y')g"(y')_ iag(y')
-t- g, _ )e dy',

(24)

where primes on g and A indicate derivatives. For flows

with Dirichlet or periodic boundary conditions at y = a and

, = b, the boundary terms are zero. Otherwise, for (22) to

be an eigenfunction, A must be such that the boundary

terms are negligible.
We wish to use (20) to evaluate the integral in (24),

but (20) is only valid for L>> ly'-yl >>rl. Provided a_/<l,
the contribution to the integral in (24) from the region

with ]y'--y[ too small for (20) to apply is negligible.
Thus, in this asymptotic analysis for a--, oo, we formally

require that the Reynolds number increase with a fast

enough so that aT/<l (that is, remain in the inertial range

as a-, oo ). In this case the first term in the integral is

essentially singular at y=y', and provided that g' is never

zero, the contributions to the integral away from the sin-

gularity ( ly'--Yla >>1 ) is of higher order in 1/a. Thus, the

contribution to the integral from the region with lY'-Y[

too large for (20) to apply is also negligible. Finally, since
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the second two terms in the integral are not singular, they

are also of higher order. We can therefore use

OR (y,y' ) 4

Oy' -- -¢C_/3(_8181-4/3 (25)

in (24), where 8=y'--y. Furthermore, A(y'), g'(y'),

e(y_), and e lag(�) can be replaced by Taylor series about

y' =y. Noting that 8 is order 1/a, the dominant term in

(24) is thus

4iCe -2/3 (y ) ;f-Y9ag'(y) A(y)eiag(Y) _lal-4/3eiaSg'(Y) dt_,
--y

(26)

where the expansion eiag(y') = e iag(y)eiaSg' (y)

× (t + ia_2g"(y)/2 + ... ) was used. Scaling ag'(y) out

of the integral and considering the limit as a-_ oo, (26)
becomes

4iCe-2/3 (Y ) " I_'- 935/3 [g, (y) ] 5/3 A (y) e'ag(y) P [P 1-4/3eip dp.
•,_ oo

(27)

The integral in (27) evaluates to 2_ri/r(]), so to leading

order the integral in (21 ) is

8,?l-Cff 2/3 (y )

91-'(1/3)ctS/3[g'(y) ]5/3 A (Y) eiag(y).
(28)

The order of the next highest term in the expansion de-

pends on the behavior of A and R near y=a and y=b. For

flows with Dirichlet or periodic boundary conditions at a
and b for example, the next term is order a -8/3, and in the

general case it is of order a -2. For (22) to be an eigen-

function, the coefficient ofA (y)e iagCy)must be independent

of y, and this constraint, along with the normalization con-

dition on g', allows g' to be determined;

g,(y)=(_(__)2/5, _.= (b 1 a Pb \5/4where J a e4/S dY ) "
(29)

Then, A (y)e iag(y) is an eigenfunction (asymptotically),

with the eigenvalue

8_-C_/3

Z=9r(½)as/3 . (30)

Note that (29) implies that e must be nonzero everywhere

so that g' will be nonzero, as was required in the analysis.

Since for large a, k coa, the expected k -5/3 inertial range

for a one-dimensional spectrum is obtained. Furthermore,

for the special case of homogeneous turbulence, with peri-

odic boundary conditions at a and b; a = k, _= e, g'= 1,

and A is a constant. The standard one-dimensional energy

spectrum can be recovered by adding the contributions

from each of the three velocity components yielding
E 1(k) = 3)t./4zr = C2e'2/3k -5/3, with 2 1C2=_C/F(_), in agree-
ment with the standard result. 2

B. Three-dimensional eigenfunctions

The extension of the above analysis to the representa-

tion of the three-dimensional variation of the velocity in a

finite domain _ is straightforward; the minor subtleties

are discussed below. Again, for simplicity, the variation of

a single velocity component (say, the u 1 component) is

considered. Generalization to the three-component result

only requires more algebra.

As before, we seek an asymptotic eigenfunction _b in
the WKB form,

_b(X) =.4 (x)e lag(x), (31 )

with IVgl > 0 and the normalization
(1/V) f_ IVgl 2 dx= 1. Substituting this form into the in-

tegral equation (1) and considering R u as given by (19),
we see that it is necessary to integrate by parts three times

to obtain a singularity that will dominate the integral. Thus

if (31 ) is to be an eigenfunction, all the boundary integrals

arising from the integrations by parts must either vanish or

be of higher order than the remaining integral, which is

expected to be of order a -11/3. In general, this places re-

strictions on the behavior of A (y) at the boundaries of the

domain. Assuming the boundary integrals are thus insig-

nificant, the leading term in the asymptotic expansion of

the integral is

i f 0gll(X,X') Og Og Og

J ox; ox; ox; ox;
(32)

× IVg(x')l-6.4(x')ei°g( ')dx '

Again the small r approximation to R u is substituted in

(32), and the integral is evaluated (to leading order) by

Taylor expansion of A, g, e, and eic'g. The result is the

three-dimensional analog of (27),

2iC6 -2/3( x )

311/31Vg(x ) 111/3A (x)e lag(x)

(33)

X O,q_)eie°s(O)p
=0 =0 =0

× sin( O)dp dO dqb,

where F(O,_) is the angular dependence of the third de-

rivative ofR u [see (19)] in spherical coordinates, with the

0=0 axis in the direction of Vg(x). Evaluating the inte-

grals yields

110_C 2/3 = ]
27r(½)ctll/a e (x)[lVg(x)l k OX1 ) ]

x IVg1-17/3A(x)eiag(x).

(34)

Note that if Vg is in the x 1 direction, then the integral is

zero, as required by incompressibility. For (31) to be an

eigenfunction, the gradient of g must be related to e, such

that the coefficient ofA (x)e lag(x) in (34) is independent of

x. This requires that Vg not be in the x 1 direction anywhere
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in the domain. Finally, since k _ a, we obtain the k-]1/3

dependence expected for an inertial range in _ (k), to
which A is analogous.

As a check, the above result (34) can be applied to

homogeneous isotropie turbulence in a periodic domain, in

which case a=k, Vg is a constant of magnitude 1, and A

and 6 are constants. In this case, by summing over the

three velocity components and integrating on shells of con-

stant k, we find E(k)=k2Z/(2_r2)=Cle2/3k-5/3, with
55 1

C 1=_C/F(_), in agreemen t with standard results. 2

The analysis above shows that the inertial range in the

KL spectrum of inhomogeneous turbulence is consistent

with (indeed derivable from) Kolmogorov's original sim-

ilarity hypotheses. This is precisely the way in which an

inertial range in the Fourier spectrum of homogeneous iso-

tropic turbulence is consistent (derivable from) the origi-

nal hypotheses. The WKB form of the eigenfunctions (31 )

is deafly one sense in which Fourier analysis can be con-

sidered "local," as discussed in Sec. I A. Thus, the analysis
in this section can be viewed as a formal version of the

local spectrum arguments of Monin and Yaglom 2 and
Batchelor)

IV. EXAMPLE

The two-point correlation tensor was computed by
Moin and Moser 14 for the numerically simulated plane

channel flow at Re=3300 computed by Kim, Moin, and
Moser. is This tensor was used to compute the KL eigen-

values and eigenfunctions, 14 which were part of the data

used by Knight and Sirovich 4 in their study of the inertial

range. Here, the eigenvalue spectra are reexamined in the

light of the analysis of the previous two sections.

In the plane channel flow, the turbulence is homoge-

neous in two spatial directions (x I and x3), and the x 2

domain extends from -- 1 to 1. The KL eigenfunctions _b(n)
are thus of the form

_(n)t.._ 2(n)t_ I,- 1,-_i(klXl+k3x3)
i k"xl=_i _z2;_l,_'3J _ , (35)

with f 1_11_ [2 dy= 1 (normalization). To define the equiv-

alent wave number k of this eigenfunction, we need only
determine

k_2= fll 0_ 2 dx2. (36)

Then k 2= _ + _ + k_3, which is equivalent to (18).

Another set of _ eigenfunctions ¢i(x)
= _i(x2;kl,k3)e i(klxl+k3x3) has also been computed based

on the two-point correlation of the x 2 derivative of the

velocity (the linear operator Z discussed in the Introduc-

tion is O/Ox2). These functions are a basis for aai/Ox 2, so

the velocity can be represented as an expansion in

_l,i(x ) = f _21_i( X l ,X_ ,x3 )dx _ , (37)

and k 2 is defined analogously to (32),

_=fl-llgl2 dy
fkll_blE dy. (38)
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FIG. 1. (a) Three-dimensional, and (b) one-dimensional energy spectra

based on (--) the energy basis; and (---) the dissipation basis.

The denominator is required here because g is normalized

rather than _b. An expansion in either _bor _bhas the prop-

erties discussed in See. II required to produce an inertial

range (statistical orthogonality with respect to energy and

dissipation). But the _bi basis provides an optimum repre-

sentation of the dissipation, in the same way that the _bi

basis gives an optimum representation of the energy. In the

discussion below _bi and _bi will be referred to as the energy
and dissipation bases, respectively.

Both the one-dimensional k z energy spectra and the

three-dimensional energy spectra based on the energy and

dissipation bases are shown in Fig. 1. The three-

dimensional spectrum is obtained by summing the eigen-
values in shells of constant k. It is remarkable that the

spectra based on the energy and dissipation bases are vir-

tually identical over a substantial range of wave numbers.

The differences are only at the largest and smallest k's.

This suggests that these spectra (for intermediate k) are a

measure of the flow that is in some sense independent of

the details of the underlying basis (i.e., what _ is). One

wonders if the KL spectra based on Rif would be the same
for any linear invertible ._a. This insensitivity of the spec-

tra to the details of the KL basis may be due to a similarity

in the bases. One might expect such a similarity if the
eigenfunctions were in essence Fourier functions. The re-

suits of See. III suggest that this is plausible, provided k z is
large enough to be unconstrained by the finite channel

width and small enough to be unaffected by the near-wall

viscous sublayer.

The other obvious feature of these spectra is that they
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exhibit no inertial range, in agreement with the one-

dimensional spectra in Ref. 15. This is to be expected be-
cause the Reynolds number is very low. The wave number

at the peak in the dissipation spectrum is no more than a

factor of 2 larger than the wave number at the peak in the

energy spectrum.

Then how can we explain the "inertial" range observed

by Knight and Sirovich? 4 One of the channel flow spectra

presented by Knight and Sirovich is shown in Fig. 2(a).

The values of the largest KL eigenvalue are plotted as a

function of the streamwise wave number (kl) for k3=0.

Also shown are the same data plotted verses the wave
number k, as defined in See. II, which in this case is

(_+_)1/2. By comparing the two spectra, it is obvious

that k 2 associated with the maximum eigenvalue is signif-

icant at the lowest wave numbers and that it varies wildly

with streamwise wave number. This occurs because Knight
and Sirovich selected the maximum eigenvalue associated

with k 3= 0 and each k 1, rather than selecting the eigenval-
ues associated with particular values of the wave number

k 2. Similar spectra obtained by selecting the mode with the

lowest k 2 are shown in Fig. 2(b). This produces a more

consistent spectrum.

These spectra exhibit a small k -11/3 range (a --_

sloped line is shown). The slope is __! because these spec-

tra represent values of $_ (k) along a line of approximately
constant k 2 and k 3. This may also be the reason that there

is an apparent inertial range when none appears in E(k) or

El(k). First, suppose that a k -11/3 range in $_(k) is in

some sense robust, with a short range appearing even at

modest Reynolds numbers, as indicated in Fig. 2. In an
inhomogeneous anisotropic flow, there is no reason to ex-

pect this short --_ range to appear at the same k or to the

same extent for different directions of the k vector. Indeed,

for the data analyzed here, spectra along lines in the k 2 and
k 3 directions in wave space exhibit no apparent inertial

range. Therefore, when 8_ (k) is integrated in shells of con-

stant k, the inertial range is smeared. In order to observe

an inertial range in E(k), the Reynolds number must be

large enough so that there is an interval in k for which 8_

is in the inertial range for all k with Ikl in the interval.
Similarly, to obtain the one-dimensional spectrum we in-

tegrate g (k) in planes of constant k 1 (say). Again a small

inertial range would be smeared. Note that these argu-

ments also suggest that in isotropic turbulence, it would be

easier to see an inertial range in the three-dimensional

spectrum than the one-dimensional spectra. This is easily

confirmed by considering a model spectrum, as in Ref. 2.

V. CONCLUSIONS

The analysis presented here suggests that the

Karhunen-Loeve (KL) eigenfunctions are a particularly
good set of basis functions with which to form an inertial-

range spectrum for inhomogeneous flows. Their statistical

orthogonality with respect to both the energy and the dis-

sipation allows one to define the effective wave number to

be proportional to the square root of the ratio of the dis-

sipation and energy of a mode. There is then the same

relationship between the energy and dissipation spectra as

with Fourier expansions. With this definition, the scaling

and scale-separation arguments that lead to an inertial

range Fourier spectrum in isotropic turbulence apply, in

this sense, the KL eigenfunctions are the natural general-

ization of the Fourier functions (Fourier functions are the

KL eigenfunctions in homogeneous flow directions). In

addition, if we make the same local homogeneity assump-
tions as Kolmogoro@ the inertial range in the KL spec-

trum can be derived from Kolmogorov's 1 scaling of the

structure functions. Note, however, that the local homoge-

neity assumptions are not required to make the spectral

arguments for an inertial range.
In the example of the turbulent channel, it was found

that, with the exception of the largest and smallest wave

numbers, the KL spectra were virtually identical over a

substantial range of k when based on either the velocity

correlations or the velocity derivative correlations. This

indicates that the KL spectrum is not very sensitive to

which KL eigenfunctions are used. Such insensitivity may

be due to a similarity in the form of the KL bases for

sufficiently large k.
Knight and Sirovich 4 appear to have been correct in

stating that the KL eigenfunctions are a particularly good

basis in which to observe an inertial-range spectrum. How-

ever, this is not the reason they observed inertial-range
spectra in low Reynolds number flows, when others had

not. They were essentially examining the variation of the

spectrum in the three-dimensional wave number space,
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rather than the integrated (in wave number space) spectra

commonly studied (e.g., one-dimensional and three-

dimensional spectra). As discussed in See. IV, it is likely

that a small inertial range could be present in the spectra

examined by Knight and Sirovich, while none would be

present in the integrated spectra due to smearing by the

integration.

ACKNOWLEDGMENTS

The research presented here was aided by discussions

with Dr. R. S. Rogallo and Dr. M. M. Rogers at NASA-

Ames Research Center. Helpful comments on a draft of

this paper were provided by Dr. R. S. Rogallo and Dr. K.

Shariff. Finally I am indebted to Professor W. C. Reynolds,

to whom this issue is dedicated, for his inspiration and for

first teaching me about the inertial range.

1A. N. Kolmogorov, "The local structure of turbulence in incompress-

ible viscous fluid for very large Reynolds nUmbers," C. R. Aead. Sci.

URSS 30, 301 (1941).

2A. S. Monin and A. M. Yaglom, Statistical Fluid Mechanics: Mechanics

of Turbulence (MIT Press, Cambridge, MA, 1975), Vol. 2.

3G. K. Batchelor, Homogeneous Turbulence (Cambridge University

Press, Cambridge, 1970).

4B. Knight and L. Sirovich, "Kolmogorov inertial range for inhomoge-

neous turbulent flows," Phys. Rev. Lett. 65, 1356 (1990).

5G. Berkooz, P. Holmes, and J. L. Lumley, "The proper orthogonal

decomposition of turbulent flows," Annu. Rev. Fluid Mech. 25, 539

(1993).

6L. Sirovich, "Analysis of turbulent flows by means of the empirical

eigenfunctions," Fluid Dyn. Res. 8, 85 (1991).

7A. M. Obukov, "On the distribution of energy in the spectrum of tur-

bulent flow," C. R. Aead. Sci. URSS 32, 19 (1941).

SL. D. Landau and E. M. Lifshitz, Fluid Mechanics (Pergamon, New

York, 1959), p. 126.

9W. Heisenberg, "On the theory of statistical and isotropic turbulence,"

Prec. R. Sec. London Ser. A 195, 402 (1948).

l°A. J. Domaradzki and R. S. Rogallo, "Local energy transfer and non-

local interactions in homogeneous, isotropic turbulence," Phys, Fluids

A 2, 413 (1990).

llj. G. Brasseur and P. K. Yeung, "Large- and small-scale coupling in

homogeneous turbulence: analysis of the Navier-Stokes equation in the

asymptotic limit," 8th Symposium on Turbulent Shear Flows Munich,

Germany, 9-11 September 1991.

12F. Waleffe, "The nature of triad interactions in homogeneous turbu-

lence," Phys. Fluids A 4, 350 (1992).

13L. Sirovieh and B. Knight, "The eigenfunction problem in higher di-

mensions: Asymptotic theory," Prec. Natl. Acad. Sci. 82, 8275 (1985).

14p. Moin and R. D. Moser, "Characteristic-eddy decomposition of tur-

bulence in a channel," J. Fluid Mech. 200, 471-509 (1989).

15j. Kim, P. Moin, and R. D. Moser, "Turbulence in fully developed

channel flow at low Reynolds number," J. Fluid Mech. 177,

133 (1987).

Phys. Fluids, Vol. 6, No. 2, February 1994 Robert D. Moser 801


